МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 31 ИМЕНИ ГЕРОЯ СОЦИАЛИСТИЧЕСКОГО ТРУДА Г.А.БЕРДИЧЕВСКОГО

УТВЕРЖДАЮ Директор школы ______И.В.Лазаренко (приказ от 27.08.2025 № 210)

РАБОЧАЯ ПРОГРАММА

учебного предмета «Практикум по физике»

для обучающихся 10 классов

Составитель: Жемейцева Маргарита Владимировна, учитель физики

Рабочая программа учебного предмета «Практикум по физике» для учащихся 10 класса

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по физике для учащихся 10 класса разработана в соответствии с федеральным государственным образовательным стандартом основного общего образования (ФГОС ООО), утвержденным приказом Министерства просвещения Российской Федерации от 31.05.2021 № 287 (в редакции приказа от 22.01.2024 № 31), на основе федеральной образовательной программы основного общего образования (ФОП ООО), утвержденной приказом Министерства просвещения Российской Федерации от 18.05.2023 № 370 (в редакции приказа от 09.10.2024 № 704), основной образовательной программы основного общего образования МБО СОШ № 31 имени Г.А. Бердичевского (ООП ООО), федеральной рабочей программы основного общего образования по физике.

Содержание программы ПО физике направлено на формирование естественно-научной картины мира обучающихся 10 классов при обучении их физике на базовом уровне на основе системно-деятельностного подхода. Программа по физике соответствует требованиям ФГОС СОО к планируемым личностным, предметным и метапредметным результатам обучения, а также необходимость реализации межпредметных связей естественно-научными учебными предметами. В ней определяются основные цели изучения физики на уровне среднего общего образования, планируемые результаты освоения курса физики: личностные, метапредметные, предметные (на базовом уровне).

Одно из труднейших звеньев учебного процесса — научить учащихся решать задачи. Физическая задача — это ситуация, требующая от учащихся мыслительных и практических действий на основе законов и методов физики, направленных на овладение знаниями по физике и на развитие мышления. Организация деятельности по решению задач является одним из условий обеспечения глубоких и прочных знаний у учащихся.

Цели:

- 1. развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;
- 2. совершенствование полученных в основном курсе знаний и умений;
- 3. формирование представителей о постановке, классификаций, приемах и методах решения физических задач;
- 4. применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания.

Задачи:

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;

3. овладение основными методами решения задач. Рабочая программа составлена на основе Примерной программы среднего (полного) общего образования.

На изучение физики (базовый уровень) на уровне среднего общего образования в 10 классе отводится 34 часа (1 час в неделю).

В соответствии с календарным учебным графиком МБОУ СОШ № 31 имени Г.А. Бердичевского на 2025-2026 учебный год на реализацию программы по предмету запланировано (тематическое планирование составлено с учетом государственных праздничных дней, определенных Правительством РФ) 34 часа.

Содержание программы

Правила и приемы решения физических задач

Что такое физическая задача? Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов. Общие требования при решении физических задач. Этапы решения задачи. Анализ решения и оформление решения. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.

Основы кинематики

Прямолинейное равномерное движение и его характеристики: перемещение, путь. Графическое представление движения РД. Графический и координатный способы решения задач на РД. Алгоритм решения задач на расчет средней скорости движения. Ускорение. Равнопеременное движение: движение при разгоне и торможении. Перемещение при равноускоренном движении. Графическое представление РУД. Графический и координатный способы решения задач на РУД.

Основы динамики

Решение задач по алгоритму на законы Ньютона с различными силами (силы упругости, трения, сопротивления). Координатный метод решения задач по динамике по алгоритму: наклонная плоскость, вес тела, задачи с блоками и на связанные тела. Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх, движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.

Элементы статики

Равновесие тел при отсутствии вращения. Момент силы. Правило моментов. Устойчивость тел.

Законы сохранения. Импульс тела и импульс силы. Решение задач на второй закон Ньютона в импульсной форме. Замкнутые системы. Абсолютно упругое и неупругое столкновения. Алгоритм решение задач на сохранение импульса и реактивное движение. Алгоритм решения задач на работу и мощность. Потенциальная и кинетическая энергия. Полная механическая энергия. Алгоритм решения задач на закон сохранения и превращение механической энергии несколькими способами. Решение задач на использование законов сохранения.

Гидростатика

Давление в жидкости. Закон Паскаля. Сила Архимеда. Вес тела в жидкости. Условия плавания тел.

Свойства газов

Решение задач на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Графическое решение задач на изопроцессы.

Основы термодинамики. Внутренняя энергия одноатомного газа. Работа и количество теплоты. Алгоритм решения задач на уравнение теплового баланса. Первый закон термодинамики. Адиабатный процесс. Тепловые двигатели. Расчет КПД тепловых установок графическим способом.

Электродинамика. Электрическое и магнитное поля. Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией.

Планируемые результаты освоения предмета

Личностные результаты.

Осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки.

Выстраивать собственное целостное мировоззрение:

- вырабатывать свои собственные ответы на основные жизненные вопросы, которые ставит личный жизненный опыт;
- учиться признавать противоречивость и незавершённость своих взглядов на мир, возможность их изменения.

Учиться использовать свои взгляды на мир для объяснения различных ситуаций, решения возникающих проблем и извлечения жизненных уроков.

Осознавать свои интересы, находить и изучать в учебниках по разным предметам материал (из максимума), имеющий отношение к своим интересам. Использовать свои интересы для выбора индивидуальной образовательной траектории, потенциальной будущей профессии и соответствующего профильного образования.

Приобретать опыт участия в делах, приносящих пользу людям.

Оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья. Учиться выбирать стиль поведения, привычки, обеспечивающие безопасный образ жизни и сохранение своего здоровья, а также близких людей и окружающих.

Оценивать экологический риск взаимоотношений человека и природы. Формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды.

Метапредметными результатами изучения курса «Физики» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

Самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности.

Выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных средств и искать самостоятельно средства достижения цели.

Составлять (индивидуально или в группе) план решения проблемы.

Работая по предложенному и (или) самостоятельно составленному плану, использовать наряду с основными средствами и дополнительные: справочная литература, физические приборы, компьютер.

Планировать свою индивидуальную образовательную траекторию.

Работать по самостоятельно составленному плану, сверяясь с ним и целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства.

Самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха.

Уметь оценивать степень успешности своей индивидуальной образовательной деятельности.

Давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Познавательные УУД:

Анализировать, сравнивать, классифицировать и обобщать изученные понятия.

Строить логичное рассуждение, включающее установление причинно-следственных связей.

Представлять информацию в виде конспектов, таблиц, схем, графиков.

Преобразовывать информацию из одного вида в другой и выбирать удобную для себя форму фиксации и представления информации.

Использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приемы слушания.

Самому создавать источники информации разного типа и для разных аудиторий, соблюдать правила информационной безопасности.

Уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче программно-аппаратные средства и сервисы.

Коммуникативные УУД:

Отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами.

В дискуссии уметь выдвинуть контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен).

Учиться критично относиться к своему мнению, уметь признавать ошибочность своего мнения (если оно таково) и корректировать его.

Различать в письменной и устной речи мнение (точку зрения), доказательства (аргументы, факты), гипотезы, аксиомы, теории.

Уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Предметные результаты

Применение полученных знаний и умений для решения задач.

Требования к уровню подготовки обучающихся.

В результате изучения физики на базовом уровне ученик должен знать/понимать

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- *смысл физических законов* классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- *вклад российских и зарубежных ученых*, оказавших значительное влияние на развитие физики;

уметь

- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитная индукция, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что наблюдения и эксперименты являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио- и телекоммуникаций; квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
 - рационального природопользования и защиты окружающей среды.

Оценка достижения планируемых результатов освоения учебного предмета Объектом оценки предметных результатов является способность учащихся решать учебно-познавательные и учебно-практические задачи на основе

метапредметных действий. Оценка достижения предметных результатов ведется в ходе выполнения заданий на уроках. Функции оценки:

- 1) информировать учеников об их продвижении в освоении программы, об их сильных и слабых сторонах;
- 2) обеспечивать положительную мотивацию учения, стимулировать обучение учащихся: ориентировать на успех, отмечать даже незначительные продвижения, поощрять учащихся, отмечать сильные стороны, позволять продвигаться в собственном темпе и т. д.

Календарно-тематический план 10 класс

Номер	Тема занятия	Кол-во	Дата	
занятия		часов		
Введение (1 час)				
1	Физическая задача.	1	04.09	
	Классификация задач. Правила и приемы решения физических задач.	1		
Кинематика (4 часа)				
2	Основные законы и понятия кинематики.	1	11.09	
3	Решение расчетных и графических задач на равномерное движение.	1	18.09	
4	Решение задач на равноускоренное движение.	1	25.09	
5	Движение по окружности. Решение задач.	1	02.10	
Динамика и статика (4 часа)				
6	Координатный метод решения задач по механике. Решение задач на основные		09.10	
	законы динамики: Ньютона, законы для сил тяготения, упругости, трения,	1		
	сопротивления			
7	Решение задач на движение материальной точки, системы точек, твердого тела	1	16.10	
	под действием нескольких сил.	1		
8	Задачи на определение характеристик равновесия физических систем.	1	23.10	
9	Задачи на принцип относительности: кинематические и динамические	1	06.11	
9	характеристики движения тела в разных инерциальных системах отсчета.	1		
Законы сохранения (4 часа)				
10	Классификация задач по механике: решение задач средствами кинематики,	1	13.11	
	динамики, с помощью законов сохранения.	1		
11	Задачи на закон сохранения импульса и реактивное движение.	1	20.11	
12	Задачи на закон сохранения и превращения механической энергии. Решение	1	27.11	
	задач несколькими способами.	1		
13	Знакомство с примерами решения задач по механике районных и областных	1	04.12	
	олимпиад.	I I		
	Строение и свойства газов, жидкостей и твёрдых тел (5 часов)			
14	Качественные задачи на основные положения и основное уравнение	1	11.12	
	молекулярно-кинетической теории (МКТ).	1		

15	Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах.	1	18.12	
16	Задачи на свойства паров: использование уравнения Менделеева—Клапейрона, характеристика критического состояния.	1	25.12	
17	Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.	1	15.01	
18	Качественные и количественные задачи. Графические и экспериментальные задачи, задачи бытового содержания.	1	22.01	
	Основы термодинамики (4 часа)			
19	Количество теплоты. Удельная теплоемкость	1	29.01	
20-21	Комбинированные задачи на первый закон термодинамики.	2	05.02,12.02	
22	Задачи на тепловые двигатели.	1	19.02	
	Электрическое поле (6 часа)			
23	Характеристика решения задач раздела: общее и разное, примеры и приемы решения.	1	26.02	
24	Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью.	1	05.03	
25	Напряженность электрического поля. Принцип суперпозиции полей.	1	12.03	
26-27	Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией.	2	19.03 02.04	
28	Решение задач на описание систем конденсаторов.	1	09.04	
Постоянный электрический ток в различных средах (7 часов)				
29	Задачи на различные приемы расчета сопротивления сложных электрических цепей.	1	16.04	
30-31	Решение задач на расчет участка цепи, имеющей ЭДС. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов.	2	23.04 30.05	
32	Подбор, составление и решение задач по интересам.	1	07.05	
33-34	Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках.	2	14.05, 21.05	

Учебно-методическое и материально-техническое обеспечение образовательного процесса по предмету

- 1. А.П.Рымкевич. Сборник задач.
- 2. Контрольно-измерительные материалы. Физика. 10-11 классы. Москва, «ВАКО».
- 3. Физика. Тренажеры для учащихся 9-11 классов. Волгоград, Учитель.
- 4. Учебники по физике.
- 5. Справочники.

Литература для учащихся

1. Рымкевич А.П., Рымкевич П.А. Сборник задач по физике. М.:Просвещение,

Литература для учителя

- 1. Аганов А. В. и др. Физика вокруг нас: Качественные задачи по физике. М.: Дом педагогики, 1998.
- 2. Бутырский Г. А., Сауров Ю. А. Экспериментальные задачи по физике. 10—11 кл. М.: Просвещение, 1998.
- 3. Каменецкий С. Е., Орехов В. П. Методика решения задач по физике в средней школе. М.: Просвещение, 1987.
- 4. Малинин А. Н. Теория относительности в задачах и упражнениях. М.: Просвещение, 1983.
- 5. Орлов В. А., Никифоров Г. Г. Единый государственный экзамен. Контрольные измерительные материалы. Физика. М.: Просвещение, 2004.
- 7. Орлов В. А., Никифоров Г. Г. Единый государственный экзамен: Методические рекомендации. Физика. М.: Просвещение, 2004.
- 8. Орлов В. А., Ханнанов Н. К., Никифоров Г. Г. Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Физика. М.: Интеллект-Центр, 2004.
- 9. Тульчинский М. Е. Качественные задачи по физике. М.: Просвещение, 1972.